Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Methods Mol Biol ; 2452: 465-473, 2022.
Article in English | MEDLINE | ID: covidwho-1844280

ABSTRACT

Inactivation methods allow for hazard group 3 (HG3) pathogens to be disposed of and used safely in downstream experiments and assays to be carried out at lower containment levels. Commonly used viral inactivation methods include heat inactivation, fixation methods, ultraviolet (UV) light and detergent inactivation. Here we describe known methods used to inactivate SARS-CoV-2 for safe downstream biological assays.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Chlorocebus aethiops , Ultraviolet Rays , Vero Cells , Virus Inactivation
2.
mSphere ; 7(3): e0091321, 2022 06 29.
Article in English | MEDLINE | ID: covidwho-1832362

ABSTRACT

New variants of SARS-CoV-2 are continuing to emerge and dominate the global sequence landscapes. Several variants have been labeled variants of concern (VOCs) because they may have a transmission advantage, increased risk of morbidity and/or mortality, or immune evasion upon a background of prior infection or vaccination. Placing the VOCs in context with the underlying variability of SARS-CoV-2 is essential in understanding virus evolution and selection pressures. Dominant genome sequences and the population genetics of SARS-CoV-2 in nasopharyngeal swabs from hospitalized patients were characterized. Nonsynonymous changes at a minor variant level were identified. These populations were generally preserved when isolates were amplified in cell culture. To place the Alpha, Beta, Delta, and Omicron VOCs in context, their growth was compared to clinical isolates of different lineages from earlier in the pandemic. The data indicated that the growth in cell culture of the Beta variant was more than that of the other variants in Vero E6 cells but not in hACE2-A549 cells. Looking at each time point, Beta grew more than the other VOCs in hACE2-A549 cells at 24 to 48 h postinfection. At 72 h postinfection there was no difference in the growth of any of the variants in either cell line. Overall, this work suggested that exploring the biology of SARS-CoV-2 is complicated by population dynamics and that these need to be considered with new variants. In the context of variation seen in other coronaviruses, the variants currently observed for SARS-CoV-2 are very similar in terms of their clinical spectrum of disease. IMPORTANCE SARS-CoV-2 is the causative agent of COVID-19. The virus has spread across the planet, causing a global pandemic. In common with other coronaviruses, SARS-CoV-2 genomes can become quite diverse as a consequence of replicating inside cells. This has given rise to multiple variants from the original virus that infected humans. These variants may have different properties and in the context of a widespread vaccination program may render vaccines less effective. Our research confirms the degree of genetic diversity of SARS-CoV-2 in patients. By comparing the growth of previous variants to the pattern seen with four variants of concern (VOCs) (Alpha, Beta, Delta, and Omicron), we show that, at least in cells, Beta variant growth exceeds that of Alpha, Delta, and Omicron VOCs at 24 to 48 h in both Vero E6 and hACE2-A549 cells, but by 72 h postinfection, the amount of virus is not different from that of the other VOCs.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , Phenotype , SARS-CoV-2/genetics
3.
J Med Microbiol ; 71(2)2022 Feb.
Article in English | MEDLINE | ID: covidwho-1709252

ABSTRACT

Introduction. The importance of human saliva in aerosol-based transmission of SARS-CoV-2 is now widely recognized. However, little is known about the efficacy of virucidal mouthwash formulations against emergent SARS-CoV-2 variants of concern and in the presence of saliva.Hypothesis. Mouthwashes containing virucidal actives will have similar inactivation effects against multiple SARS-CoV-2 variants of concern and will retain efficacy in the presence of human saliva.Aim. To examine in vitro efficacy of mouthwash formulations to inactivate SARS-CoV-2 variants.Methodology. Inactivation of SARS-CoV-2 variants by mouthwash formulations in the presence or absence of human saliva was assayed using ASTM International Standard E1052-20 methodology.Results. Appropriately formulated mouthwashes containing 0.07 % cetylpyridinium chloride but not 0.2 % chlorhexidine completely inactivated SARS-CoV-2 (USA-WA1/2020, Alpha, Beta, Gamma, Delta) up to the limit of detection in suspension assays. Tests using USA-WA1/2020 indicates that efficacy is maintained in the presence of human saliva.Conclusions. Together these data suggest cetylpyridinium chloride-based mouthwashes are effective at inactivating SARS-CoV-2 variants. This indicates potential to reduce viral load in the oral cavity and mitigate transmission via salivary aerosols.


Subject(s)
Cetylpyridinium , Mouthwashes , SARS-CoV-2 , Saliva , COVID-19 , Cetylpyridinium/pharmacology , Humans , Mouthwashes/pharmacology , SARS-CoV-2/drug effects , Saliva/virology
4.
Transbound Emerg Dis ; 69(5): 3073-3076, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1381142

ABSTRACT

We monitored the severe acute respiratory syndrome coronavirus 2 antibody response in seven dogs and two cats by using two multispecies ELISA tests, plaque reduction neutralisation test and virus neutralization. SARS-CoV-2 neutralizing antibodies in pets persisted up to 10 months since the first positive testing, thus replicating observations in COVID-19 human patients.


Subject(s)
COVID-19 , Dog Diseases , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/veterinary , Dogs , Humans , Neutralization Tests/veterinary , SARS-CoV-2
5.
Curr Res Virol Sci ; 2: 100011, 2021.
Article in English | MEDLINE | ID: covidwho-1340608

ABSTRACT

Companion animals are susceptible to SARS-CoV-2 infection and sporadic cases of pet infections have occurred in the United Kingdom. Here we present the first large-scale serological survey of SARS-CoV-2 neutralising antibodies in dogs and cats in the UK. Results are reported for 688 sera (454 canine, 234 feline) collected by a large veterinary diagnostic laboratory for routine haematology during three time periods; pre-COVID-19 (January 2020), during the first wave of UK human infections (April-May 2020) and during the second wave of UK human infections (September 2020-February 2021). Both pre-COVID-19 sera and those from the first wave tested negative. However, in sera collected during the second wave, 1.4% (n â€‹= â€‹4) of dogs and 2.2% (n â€‹= â€‹2) of cats tested positive for neutralising antibodies. The low numbers of animals testing positive suggests pet animals are unlikely to be a major reservoir for human infection in the UK. However, continued surveillance of in-contact susceptible animals should be performed as part of ongoing population health surveillance initiatives.

6.
Access Microbiol ; 3(4): 000228, 2021.
Article in English | MEDLINE | ID: covidwho-1276305

ABSTRACT

Until an effective vaccine against SARS-CoV-2 is available on a widespread scale, the control of the COVID-19 pandemic is reliant upon effective pandemic control measures. The ability of SARS-CoV-2 to remain viable on surfaces and in aerosols, means indirect contact transmission can occur and there is an opportunity to reduce transmission using effective disinfectants in public and communal spaces. Virusend (TX-10), a novel disinfectant, has been developed as a highly effective disinfectant against a range of microbial agents. Here we investigate the ability of Virusend to inactivate SARS-CoV-2. Using surface and solution inactivation assays, we show that Virusend is able to reduce SARS-CoV-2 viral titre by 4 log10 p.f.u. ml-1 within 1 min of contact. Ensuring disinfectants are highly effective against SARS-CoV-2 is important in eliminating environmental sources of the virus to control the COVID-19 pandemic.

7.
bioRxiv ; 2020 Nov 27.
Article in English | MEDLINE | ID: covidwho-955712

ABSTRACT

Until an effective vaccine against SARS-CoV-2 is available on a widespread scale, the control of the COVID-19 pandemic is reliant upon effective pandemic control measures. The ability of SARS-CoV-2 to remain viable on surfaces and in aerosols, means indirect contact transmission can occur and so there is an opportunity to reduce transmission using effective disinfectants in public and communal spaces. Virusend (TX-10), a novel disinfectant, has been developed as a highly effective disinfectant against a range of microbial agents. Here we investigate the ability of Virusend (TX-10) to inactivation SARS-CoV-2. Using surface and solution inactivation assays, we show that Virusend (TX-10) is able to reduce SARS-CoV-2 viral titre by 4log 10 PFU/mL within 1 minute of contact. Ensuring disinfectants are highly effective against SARS-CoV-2 is important in eliminating environmental sources of the virus to control the COVID-19 pandemic.

8.
J Infect Dis ; 222(9): 1462-1467, 2020 10 01.
Article in English | MEDLINE | ID: covidwho-714024

ABSTRACT

The scientific community has responded to the coronavirus disease 2019 (COVID-19) pandemic by rapidly undertaking research to find effective strategies to reduce the burden of this disease. Encouragingly, researchers from a diverse array of fields are collectively working towards this goal. Research with infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is undertaken in high-containment laboratories; however, it is often desirable to work with samples at lower-containment levels. To facilitate the transfer of infectious samples from high-containment laboratories, we have tested methods commonly used to inactivate virus and prepare the sample for additional experiments. Incubation at 80°C, a range of detergents, Trizol reagents, and UV energies were successful at inactivating a high titer of SARS-CoV-2. Methanol and paraformaldehyde incubation of infected cells also inactivated the virus. These protocols can provide a framework for in-house inactivation of SARS-CoV-2 in other laboratories, ensuring the safe use of samples in lower-containment levels.


Subject(s)
Betacoronavirus/growth & development , Virus Inactivation , Animals , Betacoronavirus/drug effects , Betacoronavirus/radiation effects , Biological Assay , Biomedical Research , Chlorocebus aethiops , Detergents , Formaldehyde , Guanidines , Hot Temperature , Methanol , Phenols , Polymers , SARS-CoV-2 , Ultraviolet Rays , Vero Cells , Viral Plaque Assay
SELECTION OF CITATIONS
SEARCH DETAIL